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Abstract Residual dipolar couplings, chemical shift

anisotropies and quadrupolar couplings provide informa-

tion about the orientation of inter-spin vectors and the

anisotropic contribution of the local environment to the

chemical shifts of nuclei, respectively. Structural inter-

pretation of these observables requires parameterization of

their angular dependence in terms of an alignment tensor.

We compare and evaluate two algorithms for generating

the optimal alignment tensor for a given molecular struc-

ture and set of experimental data, namely SVD (Losonczi

et al. in J Magn Reson 138(2):334–342, 1999), which

scales as Oðn2Þ, and the linear least squares algorithm

(Press et al. in Numerical recipes in C. The art of scientific

computing, 2nd edn. Cambridge University Press, Cam-

bridge, 1997), which scales as OðnÞ.

Keywords Residual dipolar coupling � Chemical shift

anisotropy � Residual quadrupolar coupling � Alignment

tensor � Nuclear magnetic resonance

Introduction

The measurement of residual dipolar couplings (RDCs;

Lipsitz and Tjandra 2004; Prestegard et al. 2004; Black-

ledge 2005) by solution state nuclear magnetic resonance

(NMR) spectroscopy gives information about the align-

ment of the vectors linking pairs of nuclei with non-zero

spin relative to the magnetic field. The measured RDC

value Dk is a function of hcos2ðhðrk; rHÞÞi, where hðrk; rHÞ
is the angle between the inter-spin vector rk and the mag-

netic field director rH . Specifically, Dk is given as

Dkðrk; rHÞ ¼ �
ck1

ck2
l0h

8p3

3 cos2ðhðrk; rHÞÞ � 1

2r3
k

� �
; ð1Þ

where ck1
and ck2

are the gyromagnetic ratios of the two

spins, l0 is the magnetic permittivity of vacuum, h is

Planck’s constant, and rk is the distance between the two

spins. The averaging in Eq. 1 encompasses ensemble as

well as time averaging.

Chemical shift anisotropies (CSAs; Mehring 1983;

Mason 1993) and residual quadrupolar couplings (RQCs;

Mehring 1983; Moltke and Grzesiek 1999) are other types

of NMR observables that yield information about the

global alignment of atoms and their local environment in a

molecule relative to a magnetic field and, therefore, indi-

rectly relative to each other. The measured anisotropic

contribution dan
k of the local environment to the chemical

shift dk of a nucleus and the residual quadrupolar interac-

tion of nuclei of angular momentum I[ 1
2

with their

electronic environment have the same angle dependence as

RDCs, and can therefore be expressed by the same align-

ment tensor (Mehring 1983; Moltke and Grzesiek 1999).

Theory

Description of alignment

In order to extract structural information from RDCs it is

necessary to introduce a parametrization of the averaged
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angle dependence in Eq. 1. This is achieved by defining

first, a coordinate system (molecular frame), and then,

relative to this, the orientation of the magnetic field vector

rH and the inter-spin vector rk (Fig. 1). The alignment of

the molecule relative to the magnetic field can be then

described using an alignment tensor [Saupe matrix (Saupe

1964)], leading to the concise formula

Dkðrk; SÞ ¼ Dmax
k

X
i;j

SijDkijðrkÞ; i; j 2 x; y; z ; ð2Þ

where Dmax
k ¼ � ck1

ck2
l0h

8p3
1
r3
k

is the maximum possible RDC

for a pair of spins k1 and k2 at a given distance rk, Sij ¼
3
2

cos bi cos bj
� �

� 1
2
dij is the ði; jÞth component of the

alignment tensor and Dkij ¼ cos aki cos akj expresses the

(static) orientation of the kth inter spin vector relative to the

molecular frame.

CSAs and RQCs allow for an equivalent parametrization

in terms of an alignment tensor S; the respective equations

can be found in, for example, Moltke and Grzesiek (1999)

and Losonczi et al. (1999).

Equation 2 is based on three approximations: First, the

length of the inter spin vector rk, which is generally between

a bonded pair of atoms, is assumed to be constant. Second,

the orientation of rk in the molecular frame is treated as

fixed, i.e., all rk that are represented by the same S have a

fixed alignment relative to each other, which is commonly

summarized as assuming the molecule to be rigid. Third, it

is assumed that neither the length nor the alignment of rk in

the molecular frame affects the alignment of the molecular

frame with the magnetic field. An alternative, which leads

to analogous equations, is to treat the orientation of the

molecular frame with respect to the magnetic field as con-

stant and the alignment of the inter spin vector within the

molecule as variable (Hess and Scheek 2003).

The alignment tensor S that describes the weak align-

ment of the molecular frame in a magnetic field is traceless

and symmetric and can therefore be reduced to five inde-

pendent components, which allows Eq. 2 to be simplified

to

Dkðrk; aÞ ¼ Dmax
k

X5

h

ahCk;hðrkÞ; ð3Þ

with

a1 ¼ 3
2
hcos2 bxi � 1

2
;

a2 ¼ 3
2
hcos2 byi � 1

2
;

a3 ¼ 3
2
hcos bx cos byi;

a4 ¼ 3
2
hcos bx cos bzi;

a5 ¼ 3
2
hcos by cos bzi;

ð4Þ

and

CRDC
k;1 ¼ cos2 ax � cos2 az;

CRDC
k;2 ¼ cos2 ay � cos2 az;

CRDC
k;3 ¼ 2 cos ax cos ay;

CRDC
k;4 ¼ 2 cos ax cos az;

CRDC
k;5 ¼ 2 cos ay cos az:

ð5Þ

Analogous expansions of the CSA and RQC can be derived

from their respective Hamiltonians (Mehring 1983; Moltke

and Grzesiek 1999) to obtain CCSA
k and CRQC

k . Dividing by

the respective numerical interaction constant provides the

reduced interaction and allows for fitting to an alignment

tensor.

In the following, we limit ourselves to describing RDCs

for simplicity. However, all sums over RDC interactions

can be extended to mixed sums over RDC, CSA and/or

RQC interactions with the appropriate substitutions of Dk,

CRDC
k;h , etc, to obtain a common alignment representation,

analogous to the joint evaluation of RDCs and CSAs by

Losonczi et al. (1999).

Efficient determination of the optimal alignment tensor

The parametrization described above leads to the following

question: given a molecular topology and a number of

experimentally measured RDCs, how can the five inde-

pendent components of the alignment tensor be determined

that best describe the molecular orientation, and therefore

also best reproduce the experimental results?

Solving this problem is relevant for both assessing

ensembles of molecular structures to ascertain how well

they agree with experimental data, and biasing simulations

Fig. 1 The inter-spin vector rk (green) and magnetic field vector rH
(blue) with respect to the molecular frame; angles between the inter

spin vector and the axes of the molecular frame are denoted as afx;y;zg;

angles between the magnetic field vector and the axes of the

molecular frame are denoted as bfx;y;zg
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to agree with experimental values, because in either case,

fitting of the alignment tensor S is required either for each

structure of the ensemble or at each cycle [e.g. integration

time step, in the case of molecular dynamics (MD)

simulations].

Losonczi et al. (1999) proposed an elegant solution, in

which an equation Aa ¼ b is constructed, where A is an

n� 5 matrix that holds the five Ck;h (Eq. 5) for each in-

teraction, b is a vector of size n that holds the reduced

experimentally measured RDCs, a (x in Losonczi et al.

1999) is a vector of size 5 that holds the five independent

components of the alignment tensor (Eq. 4) and n is the

number of experimentally observed interactions. Di-

agonalizing A by singular value decomposition (SVD) into

U, R, and V| such that A ¼ URV|, inverting R, and

solving for a gives the exact result for n ¼ 5 and the least

squares fit for more than five independent components.

SVD is numerically very stable in cases where R has near-

zero eigenvalues and even allows for handling underde-

termined systems, a property that makes this method very

reliable and suitable for systems with few, possibly de-

pendent, interactions, such as parallel inter spin vectors.

For the SVD of a matrix A of size n� m there are two

algorithms available: the Golub–Reinsch algorithm, which

has a computational cost of 4n2mþ 8nm2 þ 9m3 flops, and

the R-SVD algorithm, which costs 4n2mþ 22m3 flops if all

three resulting matrices U, V and R are required (Golub

and Loan 2012), which is the case for the specific task of

solving a system of equations by SVD (Losonczi et al.

1999). For fitting to RDCs, n is the number of interactions

(� 5) and m is the number of independent alignment tensor

components (=5). As m is constant in these applications,

the time complexity of both algorithms is Oðn2Þ, that is,

they scale quadratically with the number of interactions.

In systems with a large number of observables (n � 5)

that can be expressed in terms of an alignment tensor,

underdetermined matrices A that lead to zero and near-zero

eigenvalues of R are a negligible risk, but speed becomes

relevant, particularly when the fitting needs to be done for

every structure in a large ensemble or long trajectory, or at

every (2 fs) integration step in a long (ls–ms) MD

simulation.

A faster algorithm for obtaining the alignment tensor is

linear least squares (LLS; Press et al. 1997; Sass et al.

1999), which scales linearly with the number of RDCs.

LLS can be derived by defining a potential

V D;Dexp;Dmax;wð Þ ¼
XRDC

k

Vk Dk;D
exp
k ;Dmax

k ;wk

� �
ð6Þ

that penalizes the deviation of calculated from ex-

perimental RDCs. Individual weight factors wk specific to

each interaction allow, for instance, measurements made

with greater confidence to be assigned higher weight. In

order to give equal weight to different types of interactions,

i.e., RDCs, CSAs and RQCs, as well as RDCs between

different types of spins, the potential can be formulated in

terms of reduced interactions, e.g., for RDCs, D
red;calc
k ¼

Dk=D
max
k and D

red;exp
k ¼ D

exp
k =Dmax

k . The harmonic poten-

tials Vk are defined as:

Vk ¼
XRDC

k

1

2
wk D

red;calc
k ðrk; aÞ � D

red;exp
k

� 	2

: ð7Þ

The use of reduced RDCs differentiates Eq. 7 from the

similarly defined restraining potential by Hess and Scheek

(2003) in that it minimizes kDred;calc � Dred;expk instead of

kDcalc � Dexpk.

The a that minimizes kDred;calc � Dred;expk can then be

found by deriving V (Eq. 7) according to a,

0 ¼ oV

oa
¼

XRDC

k

wk a � CkðrkÞð ÞCkðrkÞ �
XRDC

k

wkD
red;exp
k CkðrkÞ;

ð8Þ

which can be rewritten as a system of five linear equations

Aa ¼ f , where

Ah;h0 ¼
XRDC

k

wkCk;hCk;h0 and ð9Þ

fh0 ¼
XRDC

k

wkD
red;exp
k Ck;h0 ; ð10Þ

and solved by standard techniques such as lower upper

(LU) decomposition (Press et al. 1997) to yield a.

The time limiting step of this computation is the sum-

mation over all interactions to obtain the 25 elements of A

and the five elements of f , which takes a time that is

proportional to the number of interactions n. The matrix

diagonalization takes constant time because A has constant

size. Therefore, this algorithm scales as OðnÞ, that is, lin-

early with the number of interactions.

Results

Calculation time

To explore how these two algorithms perform in practise,

we fitted an alignment tensor to differently sized sets of

RDCs measured for human ubiquitin in uncharged bicelles

(Ottiger and Bax 1998) using each algorithm and measured

the calculation time (Fig. 2). The smallest two sets consist

of the 68 N�HN RDCs and a subset thereof of size 30. The

66 Ca�Ha, 64 Ca�C0 and 66 C0�N RDCs were added

incrementally to generate sets of increasing size.
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The calculation times shown in Fig. 2 are for the single

function that takes an n� 5 matrix (as an array) of Ck;h, as

well as weights and experimental values of the RDCs, and

returns the five independent alignment tensor components.

The functions for least squares fitting using SVD or LLS

are part of the gromos?? suite of programs for preparing

and analyzing biomolecular simulations (Eichenberger

et al. 2011). The SVD and matrix diagonalization are im-

plemented using GSL (Galassi et al. 2009), which uses the

Golub–Reinsch SVD algorithm and solves the system of

linear equations via LU decomposition. Times were mea-

sured using gettimeofday(), which has a resolution

of 1 ls, on a single core of a 2.67 GHz Intel/Nehalem

processor.

As can be seen in Fig. 2, the LLS algorithm vastly im-

proves the speed of the tensor fitting procedure. However,

the quadratic behavior of the SVD algorithm (Galassi et al.

2009; Golub and Loan 2012) is not observed for the

numbers of RDCs examined here because the prefactor of

the linear term dominates for low numbers of RDCs. Fur-

thermore, there is a constant term in both algorithms which

contributes strongly for small n but becomes less relevant

for larger n.

Stability

We also sought to explore how robust each algorithm is, as

LLS is known to be less stable in the case of near-singular

A (Press et al. 1997). We constructed a case with only five

RDCs, in which two of the corresponding inter-nuclear

vectors are manipulated so as to become increasingly

parallel. We find that for two vectors that differ by an angle

of at least 10�5 rad, the calculated RDCs are equal to the

input on at least the first 7 (11) significant digits using LLS

(SVD). When the two vectors differ by an angle of

10�7 rad, the calculated RDCs remain equal to the input on

the first 3 digits for LLS and the first 10 digits for SVD.

Finally, when two of the inter-nuclear vectors differ by an

angle of just 10�9 rad, some of the LLS back-calculated

RDCs differ from the input values on the first digit (but the

relative difference is below 10 %) while SVD still yields

values that are correct on the first 8 significant digits.

In the extreme case of inter spin vectors that are parallel

to within numerical noise, the matrix diagonalization in

LLS may fail. A simple means of allowing a RDC-re-

strained MD simulation to proceed is to selectively catch

the GSL error code and omit the tensor update for that MD

step.

We emphasize that the situation described here is rather

implausible: not only is it unlikely that any two inter-nu-

clear vectors in a real molecule will be parallel to such high

precision, but most experimentally-measured datasets

contain far more than five RDCs.

Other than for the cases described above where one or

both of the fitting algorithms become unstable, the calcu-

lated RDCs as well as the fitted tensor components are

identical up to more than 10 significant figures, which is

larger than the precision with which RDCs are typically

measured experimentally, thus the results of using either

algorithm can be treated as equal.

Availability

The LLS algorithm for obtaining the least squares fitted

alignment tensor has been implemented in the GROMOS

biomolecular simulation software (Schmid et al. 2011,

2012; Kunz et al. 2012) and the related GROMOS?? suite

of analysis programs (program fit_rdc) (Eichenberger

et al. 2011), all of which are written in C??.

Conclusions

We compare two least squares fitting algorithms for ob-

taining the alignment tensor that describes the best fit be-

tween a molecular structure and a set of experimental

RDC, CSA or RQC values. The SVD fit algorithm com-

putes the five independent alignment tensor components a

in a time that scales as Oðn2Þ, whereas the LLS algorithm

scales as OðnÞ. While the calculation time required for

SVD is dominated by the prefactor of the linear term, and

thus does not scale as predicted for small n, LLS is still

significantly faster for small n. Importantly, we find LLS to

also be rather robust even in the limiting case of five RDCs

and near-parallel inter nuclear vectors, so that it is unlikely

to fail under more realistic conditions. We therefore rec-

ommend the use of LLS during MD simulations, as the

faster computation speed of this algorithm will be advan-

tageous for restraining simulations to fit with large sets of

Fig. 2 Time required to obtain a least squares fitted alignment tensor

using the SVD or LLS algorithm as a function of the number of RDCs
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NMR observables that may combine RDCs, CSAs and

RQCs in the longer simulations that are now possible due

to improved parallelization of code and increasing high

performance computing resources.
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kristallinflüssigen Lösungen. Zeitung für Naturforschung 19a:161–171

Schmid N, Allison JR, Dolenc J, Eichenberger AP, Kunz APE, van

Gunsteren WF (2011) Biomolecular structure refinement using

the gromos simulation software. J Biomol NMR 51:265–281.

doi:10.1007/s10858-011-9534-0

Schmid N, Christ CD, Christen M, Eichenberger AP, van Gunsteren

WF (2012) Architecture, implementation and parallelisation of

the gromos software for biomolecular simulation. Comput Phys

Commun 183:890–903

J Biomol NMR (2015) 62:25–29 29

123

http://dx.doi.org/10.1016/j.pnmrs.2004.11.002
http://dx.doi.org/10.1021/ct2003622
http://dx.doi.org/10.1016/S1090-7807(03)00178-2
http://dx.doi.org/10.1002/jcc.21954
http://dx.doi.org/10.1146/annurev.biophys.33.110502.140306
http://dx.doi.org/10.1006/jmre.1999.1754
http://dx.doi.org/10.1006/jmre.1999.1754
http://dx.doi.org/10.1016/0926-2040(93)90010-K
http://dx.doi.org/10.1007/978-3-642-68756-3
http://dx.doi.org/10.1023/A:1008309630377
http://dx.doi.org/10.1023/A:1008309630377
http://dx.doi.org/10.1021/ja9826791
http://dx.doi.org/10.1021/cr030419i
http://dx.doi.org/10.1021/ja983887w
http://dx.doi.org/10.1007/s10858-011-9534-0

	Fitting alignment tensor components to experimental RDCs, CSAs and RQCs
	Abstract
	Introduction
	Theory
	Description of alignment
	Efficient determination of the optimal alignment tensor

	Results
	Calculation time
	Stability
	Availability

	Conclusions
	Acknowledgments
	References




